$$= 4 + 8\sqrt{2} + 8$$

$$= 12 + 8\sqrt{2}$$

$$= 2\left(6 + 4\sqrt{2}\right)$$

$$\left(2 + 2\sqrt{2}\right)^{2} = a$$

$$(3+\sqrt{3})^2 = 3^2 + 2 \times 3 \times \sqrt{3} + (\sqrt{3})^2$$

$$= 9+6\sqrt{3}+3$$

$$= 12+6\sqrt{3}$$

$$= 2(6+3\sqrt{3})$$

$$(3+\sqrt{3})^2 = b$$

$$\frac{a}{b} < 1$$
 النا $a < b$ النا $a < b$ و نعلم أنّ $c^2 = \frac{\left(3 + \sqrt{3}\right)^2}{\left(2 + 2\sqrt{2}\right)^2} = \frac{a}{b}$ النا $c^2 < 1$ و بالنالي $c^2 < 1$

$$c < 1$$
 انن $\begin{cases} c^2 < 1 \\ o \end{cases}$ بناحية لدينا و من ناحية لدينا و موجب

و من ناحية أخري لدينا:

$$c - \frac{1}{2} = \frac{3 + \sqrt{3}}{2 + 2\sqrt{2}} - \frac{1}{2}$$

$$= \frac{3 + \sqrt{3}}{2 + 2\sqrt{2}} - \frac{1 \times (1 + \sqrt{2})}{2 \times (1 + \sqrt{2})}$$

$$= \frac{3 + \sqrt{3} - 1 + \sqrt{2}}{2 + 2\sqrt{2}}$$

$$c - \frac{1}{2} = \frac{2 + \sqrt{3} - \sqrt{2}}{2 + 2\sqrt{2}} > 0$$

$$c > \frac{1}{2}$$

$$e = \frac{1}{2}$$

$$c > \frac{1}{2}$$

$$\frac{1}{2}$$
 < c < 1 الخلاصة

$$\frac{3}{5}x = \frac{4}{5} \times \cancel{5} - \frac{4}{5}x$$
 يعني $\frac{3}{5}x = \frac{4}{5}(5-x)$ (2)

$$\frac{3}{5}x + \frac{4}{5}x = 4$$
يعني
$$\frac{7}{5}x = 4$$
يعني 5

$$x = 4 \times \frac{5}{7}$$
يعني $x = 4 \times \frac{5}{7}$

$$x = \frac{20}{7}$$
يعني

$$\frac{2x}{1+\sqrt{3}} \times 1 \longrightarrow 3 \le (1-\sqrt{3}) \times (1+\sqrt{3}) = \frac{2x}{1+\sqrt{3}} \le 1-\sqrt{3} \quad (3)$$

$$x \in]-\infty;-1$$
يعني $x \le -1$ يعني

بما أن (BF)يعامد المستقيمين (FE) و (FG)المتاقطعين في Fو المحتويين في المستوى (HFG) فأنّ (BF) عمودي على المستوي

 $2x \le -2$ يعنى

🍫 النتمرين الثّاني:

$$a = 12 + \sqrt{200} - \sqrt{8}$$

$$= 12 + 10\sqrt{2} - 2\sqrt{2}$$

$$=12+8\sqrt{2}$$

$$a = 2(6 + 4\sqrt{2})$$

$$27 < 32$$
 ب $\left(3\sqrt{3}\right)^2 = 27$ و $\left(4\sqrt{2}\right)^2 = 32$ ب

$$3\sqrt{3} < 4\sqrt{2}$$
 إذن $\left\{ \left(3\sqrt{3}\right)^2 < \left(4\sqrt{2}\right)^2 \right\}$ موجبان $4\sqrt{2}$ موجبان

$$3\sqrt{3}+6<4\sqrt{2}+6$$
 لنا $3\sqrt{3}<4\sqrt{2}$ لنا $3\sqrt{3}<4\sqrt{2}$ لان ($0<2$) لأن ($0<2$) لأن ($0<2$)

$$b < a$$
 يعني

$$(2 + 2\sqrt{2})^{2} = 2^{2} + 2 \times 2 \times 2\sqrt{2} + (2)^{3/4}$$

$$HK^2 = KM^2 + HM^2$$
 $= \left(\frac{4}{5}(5-a)\right)^2 + \left(\frac{3}{5}a\right)^2$
 $= \frac{16}{25}(25-10a+a^2) + \frac{9}{25}a^2$
 $= 16 - \frac{160}{25}a + \frac{16}{25}a^2 + \frac{9}{25}a^2$
 $= 16 - \frac{16}{25}a + \frac{16}{25}a^2 + \frac{12}{25}a +$

ب) بتطبيق نظرية بيتاغور في المثلث MHK القائم في H نــــجـد:

 $KM = \frac{4}{5}(5-a)$

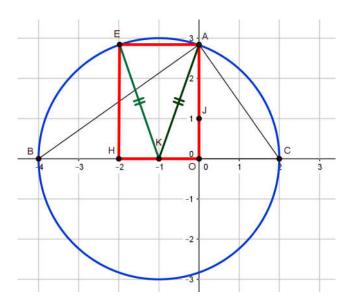
بما أنّ الرّباعي OAEH له 3 زوايا قائمة فإنّه مستطيل ب)بتطبيق نظريّة بيتاغور في المثلث OAK القائم في Oنجد:

KA² =
$$OA^2 + OI^2 = (2\sqrt{2})^2 + 1^2 = 8 + 1 = 9$$

$$KA = \sqrt{9} = 3$$
 إذن

$$E \in \zeta$$
 إستنتج أنّ

 $\rightarrow \frac{1}{4$ **بریقة أولی:** (BC فریقة أولی: بما أنّ کے دائرة قطرها [BC] و \times منتصف منتصف الدائرة کی بما أنّ کے دائرة قطرها الدائرة کی بما أنّ کے دائرة قطرها الدائرة کی بما آن کے دائرة قطرها الدائرة کی بما آن کی کی بم $(\frac{BC}{2} = \frac{6}{2} = 3)$ مرکزها K و قیس طول شعاعها یساوی


 $A \in \zeta$ فإنّ KA=3 و بما أن

بما أنّ OAEH مستطيل فإن لديه محوري تناظر و هما الموسطات العموديّة الأضلاعه و نعلم أنّ K منتصف [HO] إذن K نقطة من الموسطالعموي لـــ[AE] و منه KE=KA و نعلن أنّ و A نقطة $E \in \mathcal{L}$ من الدائرة كالتي مركز ها

→ طریقة ثانیة:

في المثلثين OAK لدينا

- زاویتان قائمتان $\widehat{AOK} = \widehat{EHK}$
- OA=EH ضلعتن متقابلان في المستطيل
- KO=1)KO=KH و KH=OH-KO=AE-KO=3-2=1 إذن حسب الحالة الثانية لتقايس المثلثات العامة فإن المثلثين OAK و HEK متقايسان و حسب العناصر النظيرة فإن KE=KA و نعلم $E \in \mathcal{L}$ فإن K فإن K التي مركزها أن K

2) أ)بتطبيق نظريّة بيتاغور في المثلث OAC القائم في Oنجد: $OA^2 + OC^2 = AC^2$

$$OA^2 = AC^2 - OC^2$$
 يعني

$$OA^2 = \left(2\sqrt{3}\right)^2 - 2^2 = 12 - 4 = 8$$
 يعني

$$OA = \sqrt{8} = 2\sqrt{2}$$
 إذن

: فأنّ $A\in igl[OJigr)$ فأنّ

$$|y_A - x_O| \times OJ = OA \qquad \text{s} \quad x_A = 0$$

$$|y_4 - 0| \times 1 = 2\sqrt{2}$$
 و $x_4 = 0$

$$\left|y_{\scriptscriptstyle A}\right|=2\sqrt{2}$$
 يعني $x_{\scriptscriptstyle A}=0$ و

(
$$y_A=2\sqrt{2}$$
 او $y_A=2\sqrt{2}$) يعني $x_A=0$ يعني

$$(y_{\scriptscriptstyle A} \geq 0 \,\,$$
 اي $A \in [OJ)$ (علما أنّ

$$y_{\scriptscriptstyle A}=2\sqrt{2}$$
 و $x_{\scriptscriptstyle A}=0$ إذن

 $\left(0\;;\,2\sqrt{2}\;
ight)$ و منهإحداثيّات النقطة A هي

ب) بتطبيق نظريّة بيتاغور في المثلث OAB القائم في O نجد :

A
$$B^2 = OA^2 + OB^2 = (2\sqrt{2})^2 + 4^2 = 8 + 16 = 24$$

$$AB = \sqrt{24} = 2\sqrt{6}$$
 إذن

3) أ) في الرّباعي OCAEلدينا:

P منتصف[OA] (مـعطى)

P منتصف [EC] (عمناظرة C بالنسبة الى P) بما أن الرب عي OCAE قطراه يتقاطعان في منتصفيهما P فإنه متوازي

ب) بما أنّ الرّباعي OCAE متوازي الأضلاع فإنّ:

AE=OC (AE)//(OC)

 $(I \in (OC))$ و نعلم أن OC=2 و المستقيمان (OC) و OC) و نعلم أن

(AE)//(OI) و
$$AE = |x_E - x_A| = 2$$
 إذن

$$|x_{\scriptscriptstyle E}-x_{\scriptscriptstyle A}|=2$$
 إذن

$$\left|x_{\scriptscriptstyle E}-0
ight|=2$$
 يعني

$$(x_{\scriptscriptstyle E} < 0)$$
 يعني $x_{\scriptscriptstyle E} = -2$ أو $x_{\scriptscriptstyle E} < 2$ يعني $x_{\scriptscriptstyle E} = -2$

$$y_{\scriptscriptstyle E}=y_{\scriptscriptstyle A}=2\sqrt{2}$$
 و من جهة أخري نعلم أنّ (AE)//(OI) و من جهة

 $\left(-2\;;\;2\sqrt{2}\;\right)$ هي E إذن إحداثيّات النقطة

4) أي في الرباعي OAEH لدينا

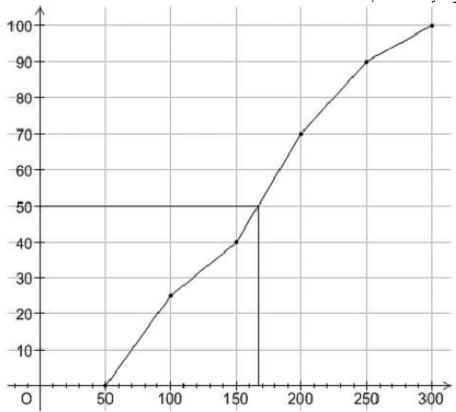
- (OI) على E المسقط العمودي لـ E على (H) المسقط العمودي لـ E
 - (O;I;J)) $\widehat{AOH} = 90^{\circ}$
- $((AO)\perp(OI))$ g (AE)//(OI)) Q

التمرين الخامس:

(1

(2

الفئة المنوال هي]200; 150]


• المعدّل الحسابي للزيادة في المرتّب الشهري هو

• المعدّل الحسابي للزيادة في المرتب الشهري هو
$$\overline{X} = \frac{25 \times 75 + 15 \times 125 + 30 \times 175 + 20 \times 225 + 10 \times 275}{100} = \frac{16250}{100} = 162,5$$

[250;300[[200;250[[150;200[[100;150[[50;100[قيمة الزيادة
275	225	175	125	75	مركز الفئة
10	20	30•	15	25	التكرار(عدد العملة)
100	9 0	70	40	25	التكرار التراكمي الصاعد

التكرار التراكمي الصناعد

ب) مضلّع التكرارات التراكميّة الصّاعدة:

قيمة الزيادة

150 دينار هي

 $Me \approx 167$ القيمة التقريبيّة للموسط هي 167 دينارا

3) احتمال أن يكون العامل من بين الذين تمتعوا بزيادة في مرتبهم الشهري أقل من

$$\frac{25+15}{100} = \frac{40}{100} = 0,4$$

